

Do Now Review

Ruler B is MORE PRECISE.
The precision of a measurement describes how detailed or exact the measurement is.

	Table of Contents	
Date	Topic	Page \#
$9 / 10 / 13$	Observations 3	1
$9 / 12 / 13$	Metric System \& Measurement	2

English vs. Metric Units

Which is longer?

1 yard $=0.9444$ meters
The basic unit of length in the metric system in the meter and is represented by a
lowercase m .
Standard: The distance traveled by light in absolute vacuum in $1 / 299,792,458$ of
a second.
Metric Units
1 Kilometer $(\mathrm{km})=1000$ meters
1 Meter $=100$ Centimeters (cm)
1 Meter $=1000$ Millimeters (mm)
Which is larger?

A. 1 meter or 105 centimeters	C. 12 centimeters or 102 millimeters
B. 4 kilometers or 4400 meters	D. 1200 millimeters or 1 meter

Prefix:	Symbol:	Magnitude:	Meaning (multiply by):
Hepa-	H	10^{21}	1000000000000000000000
Exa-	E	10^{18}	1000000000000000000
Peta-	P	10^{15}	1000000000000000
Tera-	T	10^{12}	1000000000000
Giga-	G	10^{9}	1000000000
Mega-	M	10^{6}	1000000
Kilo-	K	10^{3}	1000
hecto-	h	10^{2}	100
deka-	da	10	10
-	-	-	-
deci-	d	10^{-1}	0.1
centi-	c	10^{-2}	0.01
milli-	m	10^{-3}	0.001
micro-	$\mu(\mathrm{mu})$	10^{-6}	0.000001
nano-	n	10^{-9}	0.000000001
pico-	p	10^{-12}	0.000000000001
femto-	f	10^{-15}	0.000000000000001
atto-	a	10^{-18}	0.000000000000000001
ento-	e	10^{-21}	0.000000000000000000001

Check-Up

What unit would you use to measure...
(a) The distance from the Atlantic Ocean to the Pacific Ocean?
(b) The distance a snail travels in a day?
(c) The length of the school bus?
(d) The thickness of a tortilla?
(e) the length of your shoe (heel to toe)?
(f) The thickness of a jump rope (not length!)?
(g) Length of a jump rope?

Create a Table in your Notebook:

Object	Measurement
Lab Table Height	
Lab Table Width	
Lab Table Length	
Notebook Length	
Notebook Width	
Notebook Height	

Now, work with your partner to make these measurements.

Object	Measurement
Lab Table Height	
Lab Table Width	
Lab Table Length	
Notebook Length	
Notebook Width	
Notebook Height	

Let's check our results...

Object	Measurement
Lab Table Height	
Lab Table Width	
Lab Table Length	
Notebook Length	
Notebook Width	
Notebook Height	

